Direct evidence for S-nitrosation of mitochondrial complex I.
نویسندگان
چکیده
NO* (nitric oxide) is a pleiotropic signalling molecule, with many of its effects on cell function being elicited at the level of the mitochondrion. In addition to the well-characterized binding of NO* to the Cu(B)/haem-a3 site in mitochondrial complex IV, it has been proposed by several laboratories that complex I can be inhibited by S-nitrosation of a cysteine. However, direct molecular evidence for this is lacking. In this investigation we have combined separation techniques for complex I (blue-native gel electrophoresis, Superose 6 column chromatography) with sensitive detection methods for S-nitrosothiols (chemiluminescence, biotin-switch assay), to show that the 75 kDa subunit of complex I is S-nitrosated in mitochondria treated with S-nitrosoglutathione (10 microM-1 mM). The stoichiometry of S-nitrosation was 7:1 (i.e. 7 mol of S-nitrosothiols per mol of complex I) and this resulted in significant inhibition of the complex. Furthermore, S-nitrosothiols were detected in mitochondria isolated from hearts subjected to ischaemic preconditioning. The implications of these results for the physiological regulation of respiration, for reactive oxygen species generation and for a potential role of S-nitrosation in cardioprotection are discussed.
منابع مشابه
S-nitrosation and thiol switching in the mitochondrion: a new paradigm for cardioprotection in ischaemic preconditioning.
Understanding the molecular mechanisms through which the heart could be protected from ischaemic injury is of major interest and offers a potential route for the development of new therapies. Recently, several studies have uncovered intriguing relationships between nitric oxide-induced protein thiol modifications and the cardioprotected phenotype. In a highly cited, seminal article published in...
متن کاملPersistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria.
S-nitrosation of mitochondrial proteins has been proposed to contribute to the pathophysiological interactions of nitric oxide (NO) and its derivatives with mitochondria but has not been shown directly. Furthermore, little is known about the mechanism of formation or the fate of these putative S-nitrosothiols. Here we have determined whether mitochondrial membrane protein thiols can be S-nitros...
متن کاملIdentification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation
The S-nitrosation of mitochondrial proteins as a consequence of NO metabolism is of physiological and pathological significance. We previously developed a MitoSNO (mitochondria-targeted S-nitrosothiol) that selectively S-nitrosates mitochondrial proteins. To identify these S-nitrosated proteins, here we have developed a selective proteomic methodology, SNO-DIGE (S-nitrosothiol difference in gel...
متن کاملS-nitrosation of serum albumin by dinitrosyl-iron complex.
The objective of this study was to identify a potential mechanism for S-nitrosation of proteins. Therefore, we assessed S-nitrosation of bovine serum albumin by dinitrosyl-iron-di-L-cysteine complex [(NO)2Fe(L-cysteine)2], a compound similar to naturally occurring iron-nitrosyls. Within 5-10 min, (NO)2Fe(L-cysteine)2 generated paramagnetic albumin-bound dinitrosyl-iron complex and S-nitrosoalbu...
متن کاملFunction of mitochondrial complex-I and -IV in normal human and Parkinson's disease cybrids
Mitochondrial dysfunction has been implicated in the dopaminergic neurodegeneration, which characterizes Parkinson’s disease (PD). The activities of mitochondrial complexes I and IV were found to be reduced in the brains of PD patients (n = 4) as compared to age-matched controls (n = 4). This is tested in SH-SY5Y cell lines, transformed Rho0 cells, and in normal and PD cybrid cell lines. Cybrid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 394 Pt 3 شماره
صفحات -
تاریخ انتشار 2006